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Abstract :-  Acyclic Graph 

 An acyclic graph is one that contains no cycles. A tree is a connected acyclic graph. The tree 

on six Vertices are shown in figure- 

Figure :  

 

Theorem : "In a tree, any two vertices are connected by a unique path. 

Proof : By contradiction, let G be a tree and assume that there are two distinct (u,v.)- Path P1,  and 

P2 in G. Since P1P2, there is an edge xye   of P1 that is not an edge of P2. Clearly the graph 

(P1P2)-e is connected. It therefore contains an ),( yx -path P. But then P+e is a cycle in the acyclic 

graph G, a contradiction. 

 The converse of this theorem hold for graphs without loope. 

       Observe that all the trees on six vertices have five edges. In general : 

Theorem : If G is a tree, then  1  v  
Proof :- By induction on v. When v=1, GK and  =0=v-1. 

 Suppose the theorem true for all trees on fewer than v vertices, and let G be a tree on v  2 

vertices. Let Euv    . Then G-uv contains no ),( vu . Path, since uv  is the unique ),( vu  - path in G. 
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Thus G- `uv  is disconnected and so (G-uv)=2. The components G1 and G2 of G-uv being acyclic, 

are trees. Moreover, each has fewer than v vertices. Therefore, by the induction hypothesis  

  (Gi)=v(Gi)-1 for ...,2.,1i  

 Thus,  (G)= (G1)+  (G2)+1=v(G1)+V(G2)-1=V(G)-1 

Corollary :- Every nontrivial tree has at least two vertices of degree one.  

 Proof, Let  G be a nontrivial tree, Then d(v)1, for all vV 

Also, consider the incidence matrix M. The sum of the entries in the row corresponding to vertex v 

is precisely d(v), and therefore 
Vv

vd )(  is just the sum of all entries in M. 

 But this sum is also 2, since each of the  column sums of M is 2. 

 i.e.  
Vv

vd )(  = 2 = 2v-2 

 It now follows that  d(v)=1 for at least two vertices v. 

Cut Vertices : A vertex v  of G is a cut vertex if E can be partioned into two nonempty subsets E1 

and E2 such that G[E1] and G[E2] have just the vertex v  in common. If G is loopless and nontrivial,  

then v  is a cut vertex of G if and only if (G- v )>(G). The graph of figure has the five cut vertices 

indicated. 

 

 

 

 

 

 

 

 

 

 

Theorem : A vertex v  of a tree G is a cut vertex of G if and only if d(v)>1. 

Proof : If d(v)=0, GK, and clearly, v is not a cut vertex. 

 If d(v)=1, G - v is an acyclic graph with v(G-v) - 1 edges.  Hence (G-v)=1 = (G), and v is 

not a cut vertex of G. 

 If d(v)>1, there are distinct vertices u and w adjacent to v. The path uvw is a (u,w)-path in 

G.  Therefore we know  uvw is the unique (u,w)-path in G. It follows that there is no (u,w)-path in 

G-v, and therefore that (G-v)>1 =  (G). Thus v is a cut vertex of G. 

Corollary :  Every nontrivial loopless connected graph has at least two vertices that are not cut 

vertices. 

 Proof  :  Let G be a nontrivial loopless connected graph. Every  connected graph, G 

contains a spanning tree T.  and    every  nontrivial  tree has at  least  two vertices  of degree one 

and  A vertex  v  of  a tree  G  is a  cut  vertex   of  G if  and only  if  dv>1,  T has at least two 

vertices that are not cut vertices. Let v be any such vertex. Then, 

 (T-v) = 1 

Since T is a spanning subgraph of G, T-v is a spanning subgraph of G-v and therefore  

 (G-v)   (T-v) 
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If follows that (G-v) = 1, and hence that v is not a cut vertex of G. Since there are at least two such 

vertices v, the proof is complete. 
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